B.4–B.5 Quiz

Graph the line with the given slope that passes through the given point. (Section B.4)

1. slope = -3; (2, 4)

2. slope
$$=\frac{2}{3}$$
; (-1, 0)

3. Find the slope of the line. *(Section B.4)*

			(-	4, ⁻	1)	- 1	y
≺ -(6 – 5	5	-:	3 – 2	2	0	\overrightarrow{x}
						_2	
						_3	
		(–	5,	-3))	-4	
						-5	
	¥					Ĭ	1

Find the slope and *y*-intercept of the graph of the linear function. (Section B.5)

4. y = 2x + 9**5.** y = -5x + 4**6.** $y = \frac{3}{5}x - 6$ **7.** 3x - y = 8**8.** 2x + 8y = -16**9.** 4x - 3y = 15

Graph the linear function using slope-intercept form. (Section B.5)

- **10.** y = -x + 2 **11.** $y = \frac{3}{2}x 4$ **12.** -x + 3y = 3
- **13. PERIMETER** The perimeter of the rectangle can be modeled by the linear function y = 2x + 11. (*Section B.5*)
 - **a.** Find the slope and *y*-intercept of the graph of the linear function.

- **b.** Graph the linear function.
- **c.** Is it possible for the rectangle to have a perimeter of 9 units? Explain.
- 14. RAMP What is the slope of the skateboard ramp? What is the slope of the skateboard ramp if the length is doubled? (Section B.4)